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Abstract. We show how the diluten→ 0 spin vector model introduced originally by Wheeler
and co-workers for describing the polymerization phenomenon in solutions of liquid sulphur
and of living polymers may be conveniently adapted for studying phase separation in systems
containing long flexible micelles. We draw an isomorphism between the coupling constant
appearing in the exchange Hamiltonian and the surfactant energies in the micellar problem. We
solve this problem within the mean-field approximation and compare the main results we have
obtained with respect to polymer theory and previous theories of phase separation in micellar
solutions. We show that the attractive interaction termχ between monomers renormalizes the
aggregation energy and subsequently the corresponding size distribution. Under these conditions,
we observe that the general aspect of the phase diagram in the(8, χ) plane (where8 is the
surfactant concentration) is different from previous results. The spinodal line shows a re-
entrant behaviour and, at low concentrations, we point out the possibility of specific nucleation
phenomena related to the existence of a metastable transition line between a region composed of
spherical micelles and another one corresponding to a dilute solution of long flexible micelles.

1. Introduction

The study of surfactant molecules in aqueous solutions has drawn considerable effort over
the past decades [1]. Above the critical micellar concentration (cmc), surfactant molecules
are known to assemble into aggregates or micelles. At low surfactant concentration,
these micelles are usually minimum globular aggregates consisting of tens of molecules.
However, when the concentration is raised or salt added, these globular aggregates grow
into cylindrical ones. This is referred to in the literature as the sphere to rod transition
[2]. In most of the systems these aggregates are rod-like (i.e., their total length is much
smaller than their persistence length). However, under specific conditions, experimental
evidence has been recently reported of the existence of cylindrical micelles long enough to
be flexible in dilute solution [3]. These micelle solutions, which may become entangled
for concentrations above a few weight per cent, exhibit long relaxation times and strongly
viscoelastic behaviour. A wide range of experimental studies such as linear viscoelasticity,
temperature jump and light scattering in the semi-dilute region supports a model in which
the micelles are large flexible worm-like aggregates entangled but with no cross-links [4].
The dynamic properties of these systems are well understood in terms of classical theory
of linear polymers [5]. However, in contrast to polymer solutions, the micelle construction
results from a thermodynamic self-assembly process in which several spherical micelles
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assemble to form a long worm-like aggregate. Therefore these systems present a large size
distribution which may vary by means of controllable parameters such as surfactant or salt
concentration and temperature. The elongation of micelles of ionic surfactant in aqueous
solutions is now well understood in the special case where these micelles may be considered
as non-interacting ones (i.e., at low concentrations). In such ‘ideal solutions’, the prevailing
treatments of amphiphile self-assembly and micellar growth which combine basic classical
thermodynamics and simple phenomenological models for the various contributions help
us to understand micellar growth in terms of reversible polymerization [6, 7]. However,
when the concentration increases, micelles start overlapping and interacting so that they
may eventually show phase separations.

Experimental evidence of lower consolute critical temperature in high salt aqueous
solutions of cetylpyridium and cetylmethylammonium bromide, nitrate and chlorate has
been recently drawn [8] and are undoubtedly connected with the existence of giant flexible
micelles in solution [9]. The exact nature of the physical mechanism leading to a phase
separation phenomenon in these systems still provides a large debate because of two
possible interpretations. First, at high salt concentrations, the electrostatic repulsions
between charged micelles may be screened so much that the Van der Waals interactions
become dominant. It then turns out that brine could become a bad solvent for the micelles
beyond some experimental conditions. Another mechanism has been considered recently
[10, 11]: at high salinity the worm-like micelles could branch and lead to the formation of
a connected network through the sample, thus leading to phase separation. Many nonionic
surfactant water systems, such as poly(ethylene glycol) alkyl ethers, alkylsulphenyl-ethanol
and dimethyl-alkylphophine oxides, also exhibit lower consolute temperature [12]. The
phase boundary of these systems can be qualitatively well reproduced if the micelles are
supposed to be rod shaped and flexible at high temperature [13]. The theory of phase
separation occurring in these systems is challenging. Micellar solutions are qualitatively
distinct from simple liquid solutions in that they involve a multiplicity of aggregate species
which continually exchange molecules and do not maintain their identity. Therefore
a theory of phase separation in these solutions must include thermodynamic multiple
chemical equilibrium between micelles, attractive interactions leading to phase separation
and excluded volume. Thus, most of the theories of phase separation in micellar systems
[14–17] start from the Flory–Huggins lattice description of polydispersed polymeric chains
and follow the works respectively published by Scott as well as Tobolskyet al initially
devoted to the description of phase equilibria in liquid sulphur solutions [18, 19]. A few
years ago, Wanget al proposed another approach in which they show that ann→ 0 spin
vector modelis particularly suited for describing solutions of long flexible micelles with
attraction exclusively involving excluded volume effects [20]. Their approach which is
parallel to that of Wheeler and Pfeuty [21] for addressing a similar problem characterized
by a unidimensional aggregation process describes the phenomenon of micellar growth
at any concentration. A so calleddilute n → 0 vector modelwas later introduced by
Wheeler and co-workers to treat equilibrium polymerization of sulphur in solution [22] and
polymerization in living polymer systems [23].

The aim of this paper is to present an adapted version of thedilute n → 0 vector
model in order to treat the phase separation in solution of long flexible micelles. The
advantage of such an approach is to provide a unified theoretical description of micellar
solutions at any concentration. Before proceeding with the definition and analysis of the
model presented here, it is worth recalling several significant differences between the
intrinsic physics of micellization and that of polymerization in living polymer systems.
The controlling variables are different in both sets of problems. In living polymer systems,
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polymerization results from the presence of an initiator and its description requires at least
two equilibrium constants, one for initiation (Ki) and one for growth reaction (Kp). When
the initiation reaction goes to completion (i.e.Ki � 1), the initiator concentration fixes
the total number of polymers. Wheeler and co-workers have notably focused on the
polymerization transition which exhibits a non-classical critical behaviour in the limit of
small initiator concentration. Besides, in contrast to the micellar systems, the monomer
plays the role of solvent for the polymeric chains. Thus, by comparing with the formalism
used in magnetism, the concentration of this initiator is an adjustable parameter that fixes the
magnitude of the corresponding magnetic field in the equivalent magnetostatic Hamiltonian.
However, for micellization, as we shall see in section 2, the magnitude of this field is fixed
by energy parameters. Due to the fact that sets of controlling variables are different in the
two problems, here we present new results which are of interest in the field of surfactant
micellization because they are experimentally accessible and tunable. These results concern
the growth of aggregates with concentration and temperature as well as the osmotic pressure;
they allow us to build up a phase diagram including spinodal and binodal lines but also a
transition line such as the sphere to rod transition and the dilute–semi-dilute transition. The
present paper is organized as follows: In section 2, we discuss the isomorphism that exists
between an interacting solution of long flexible micelles and the diluten→ 0 spin vector
model. Section 3 is devoted to the mean-field solution of this model and to the discussion
of the main results obtained with respect to the corresponding ones derived from polymer
theory and to previous theories of phase separation in micelles.

2. Flexible micelles and statistical treatment

The elongation of micelles results from a thermodynamic self-assembly process which can
be modelled as multiple chemical equilibrium between aggregates of different sizes. The size
and the distribution of these aggregates vary with surfactant concentration. A natural way
to model this self-assembly process consists in using a grand-canonical partition function.
We recall in appendix A that the grand-canonical partition function of a system composed
of interacting self-avoiding micelles may be mapped onto a diluten→ 0 spin vector model.
Under these conditions, we consider that elongated micelles result from the condensation of
minimum spherical micelles and we neglect surfactant molecules which are not associated
into an aggregate. Far above the critical micellar concentration (cmc), the proportion of
unassociated surfactant molecules is negligible, essentially constant, and has no influence on
the size distribution [24]. We consider an equilibrium between isolated monomers (minimum
spherical micelles) and chains of different size. In this respect, we introduce a lattice by
sharing the volume into unit cells. Thus, each cell may be respectively occupied by an
isolated monomer, a monomer unit which belongs to a chain or by solvent molecules. The
cell volume is fixed by the monomer size. Following previous phenomenological treatments
[1], we consider that the internal energyE of an elongated linear open aggregate consisting
of n monomers is given by:

E = (n− 2)εint + 2εcap = nεint + δ (1)

where εint and εcap are the respective energies of an internal monomer and a monomer
belonging to the extremity of a chain. The growth of spherical micelles into elongated ones
is exclusively governed by the free energy differenceδ between an internal and an edge
monomer in a chain. The attractive interactionχ is treated in the Flory approximation [25]
(i.e., only nearest neighbour monomers interact). This approximation previously used by
Menes and co-workers for the description of attractive interactions in tubular microemulsions
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[26] as well as by Sear and Mulder in solutions of long flexible micelles [17] is correct if
the range of interaction is small with respect to the size of the large micelles. This is indeed
true for Van der Waals attraction and hydration effects and also reasonable for electrostatic
repulsion as long as the ionic strength of the solution is large (whereas the Debye screening
length is short). However, we make a further restrictive assumption that turns out to be very
important: the attractive interaction only occurs between adjacent monomers (i.e., occupied
nearest neighbour sites) not linked directly to each other when they belong to a same chain.
At this step one must remember that the link energy of two adjacent monomers corresponds
to εint and notχ . This restriction does not alter the possibility of intra-micellar interactions
since two adjacent monomers may belong to the same chain and may not be connected
directly to each other. As a consequence, we will see that this leads to a renormalization
of the aggregation constant. Following these considerations, the grand partition function of
the system is:

Z =
∑
{σk}

∑
l

∑
p

∑
m

0(m, l, p, {σk},M)exp[βµ(m+ 1+ p)] exp[−βE(m, l, p)]

× exp(βχNm,m) (2)

where the set{σk} specifies the particular assignment of solvent (σk = 0) or monomer unit
(σk = 1) to each cell;0(m, l, p, {σk},M) is the number of ways of arrangingp linear
polymer chains characterized by a total number ofl bonds andm isolated monomers
(single site chain) on a lattice composed ofM sites, for a particular given set{σk}; µ is the
chemical potential of a monomer unit andE(l,m, p) the internal energy of the configuration
described by the set{σk} in the absence of attractive interaction.Nm,m is the number of
nearest neighbour monomers which are not directly connected to each other into the same
aggregate. Note thatE(l,m, p) may be defined as:

E(l,m, p) = 2pεcap + (l − p)εint +mη (3)

whereη is the internal energy of an isolated monomer.
Presently, one must introduce the corresponding diluten→ 0 spin-vector model where

the variableσi still determines the presence (σi = 1) or the absence (σi = 0) of a monomer
on a sitei (isolated or incorporated into a chain). The basic Hamiltonian may be defined as:

−βH = K
∑
〈i,j〉

Si · Sj σiσj + h
M∑
i=1

Si,1σi + µ̃β
M∑
i=1

σi + χβ
∑
〈i,j〉

σiσj

+
(
Q− h

2

2

) M∑
i=1

S2
i,1σ

2
i (4)

where the generic notation〈i, j〉 refers to the interaction between nearest neighbour sites,
independently of the lattice dimensionality. Note that forQ = h2/2 this Hamiltonian
is similar to that one previously introduced by Wheeler and Pfeuty for describing
polymerization in solutions of liquid sulphur and living polymers, respectively [22, 23].
In order to make a correspondence between the model of polymerization in solution and the
dilute n→ 0 Hamiltonian model proposed above, the particular choiceQ = h2/2 requires
that the value of the constant equilibrium describing the first polymerization step is twice
those characterizing the other steps [22, 23]. This factor 2 is motivated for the liquid sulphur
solutions by the topology of the monomers which are involved in S8 rings. Indeed, in the
first propagation step, the newly opened active S8 ring may be connected to either end of the
already opened ring in the adjacent cell whereas in the propagation step the newly opened
ring has only one active end of a monomer to which it can connect [22]. However, the
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same factor 2 has no serious justification for the living polymer solutions and has been fixed
there only to bring a correspondence with then → 0 dilute spin-vector Hamiltonian first
introduced for describing the polymerization process in liquid sulphur solutions [23]. In
appendix A, we also show that fixingQ = 0 is necessary to ensure a correct correspondence
between a solution of mutually and self-avoiding micelles with attractive interaction and the
dilute n→ 0 spin-vector model. The partition functionZ associated with this Hamiltonian
can be straightforwardly evaluated in the vanishingn limit by expanding exp(−βH) in
powers ofSj and by averaging this expression with no weight over all the components
of all spinsSi,α (i = 1, 2, . . . ,M andα = 1, . . . , n). Such calculations which have been
already widely treated in the literature [21–23, 27] do not need to be presented in detail
here and are briefly reported in appendix A. Following this procedure and forQ = 0, it is
possible to derive in then→ 0 limit that:

Z =
∑
{σi }

∑
l

∑
p

∑
m

0(m, l, p, {σi},M)h2pK1 exp(βχN+1,+1) exp[βµ̃(m+ l + p)] (5)

where we recall that0(m, l, p, {σi},M) represents the number of ways of arranging on anM

site latticem single sites andp mutually and self-avoiding walks characterized byl bonds,
with the restriction that walks form rings or visit sites without monomers (σi = 0). N1,1 is
the number of nearest neighbour pairs of sites〈i, j〉 such thatσi = +1 andσj = +1. As
a consequence, one can assume the following correspondences between coupling constants
in the spin Hamiltonian and microscopic energies in the micellar treatment knowing that
Nm,m = N1,1− l:

µ̃ = µ− η Q = 0 K = exp[−β(ε̃int + χ)] (6)

h = exp[−β(ε̃cap − ε̃int /2)] (7)

with

ε̃cap = εcap − η ε̃int = εint − η (8)

and whereµ is the chemical potential of a monomer unit. At this point, it is worth noting
that an important approximation inherent to the nature of the involved Hamiltonian (and also
made by other authors [21–24, 26, 27] in addressing similar problems) is that we exclude
the formation of closed rings. Indeed it is reasonable to assume that the population of
closed rings is always small for concentrations higher than the cmc and therefore can be
neglected. This is due to the fact that the energetic gain associated with the ring formation is
over-compensated by the entropically unfavourable reduction of configurations for a closed
ring compare to that of an open chain [28].

3. Mean-field results and discussion

This model solved within the mean-field approximation (see appendix B for a detailed
derivation) gives the following expressions forπ the osmotic pressure andβF/M, the free
energy per site:

−βπv0 = − lnZ(h,K,µ, χ)

M
= ln(1−8)+ qK

2
〈Sσ 〉2+ qβχ

2
82 (9)

and
βF
M
= βµ8− βπv0 = 8 ln

[ 〈Sσ 〉
(1−8)(h+ qK〈Sσ 〉)

]
+ βη8+ ln(1−8)− qβχ

2
82

+qK
2
〈Sσ 〉2 (10)
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Figure 1. Log–log plot of the osmotic pressure versus monomer concentration forεint =
−8 kBT , εcap = 4 kBT (i.e., an end energyδend = 0), η = 0 and no attractive inter-intra-
micellar interactions.8∗ and8∗∗ respectively correspond to the monomer concentration at
which sphere/rod transitions and dilute/semi-dilute transitions occur. The values of the osmotic
pressure are numerical.

where〈Sσ 〉 is given by:

〈Sσ 〉 = 8(h+ qK〈Sσ 〉)
(1+ qKh〈Sσ 〉 + ((qK)2/2)〈Sσ 〉2) . (11)

The osmotic pressure of the solutionπ , solved numerically within the mean-field
approximation, leads to three distinct regimes (figure 1) i.e., to three different power laws
8k. At low surfactant concentration the regimek = 1 corresponds to spherical micelles with
no elongation. Since their number simply increases with8, it follows from Van’t Hoff’s
law thatπ is proportional to8 (i.e., the number of colloidal particles). For intermediate
concentration range, one hask = 1/2. The Van’t Hoff law is still fulfilled in this regime.
However, the number of aggregates in solution is proportional to8/N ; therefore, asN varies
with 81/2 (figure 2(a)), the average aggregation number finally varies as81/2. Indeed,
by thoroughly examining equation (11), it is straightforwardly shown that, in the dilute
regime which corresponds to conditionqK〈Sσ 〉 � h > 1 (i.e.,8 > 1/2qK), the average
aggregation numberN behaves more precisely as (cf appendix C)

N ≈ 2
√

2qK8

h
(12)

in agreement with results found for ideal micelle solutions [1] without taking into account
excluded volume and interactions between chains. In the previous section, we have shown
that the effect of attractive interactions between monomers described by the parameterχ is
to renormalize the aggregation constantK according to:

K(χ) = K(0) exp(−βχ) (13)

and therefore alsoN , the average aggregation number (cf equation (12)). Indeed, they
oppose the elongation process according to the following expression:

N(χ) ≈ N(0) exp(−βχ/2) (14)
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(a)

(b)

Figure 2. (a) Log–log plot of the average aggregationN (numerically determined), versus
monomer concentration8, for an energyεint = −8 kBT with no attractive interaction. The
parametersεcap and η are identical to those of figure 1. (b) Log–log plot of the average
aggregation numberN (numerically determined), versus monomer concentration8, for an
energyεint = −8 kBT and for different values of the energy of attractive interaction. Open
circles, closed circles and diamonds correspond respectively toχ = 0.0, 0.3 and 0.7 kBT . The
parametersεcap andη are identical to those of figure 1.

whereN(0) is the value ofN(χ) for χ = 0. This result differs significantly from the model
of Blanckensteinet al [16] which predicts that attractive interactions leave the micellar
distribution and the average aggregation size unchanged. When the temperature approaches
the lower critical point (i.e.,χ increases), the average size of the micelles decrease and may
have some effects on the scaling of dynamic properties of the solution close to the critical
point. At higher concentrations,k = 2 corresponds to the semi-dilute regime for which
the micelles start overlapping close to the critical point. Finally and more surprisingly, the
effects of attractive interactions are important even at low concentrations. The existence
of attractive interaction increases the value of the concentration8∗ at which the sphere to
rod transition occurs (figure 2(b)). The value of8∗ can be estimated more precisely by
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Figure 3. Spinodal curves determined numerically for different energies of aggregation.
Open diamonds, closed diamonds, open circles, closed circles and open triangles respectively
correspond to binary mixture of monomers in solution(εint = +∞), aggregation energies
εint = −2, −4, −8 and−15 kBT , εcap = εint /2 andη = 0.

extrapolating equation (12) toN = 1:

8∗(χ) ≈ h2

8qK
≈ 8∗(0) exp(βχ) (15)

where8∗(0) is the value of8∗(χ) for χ = 0. Figure 3 shows the evolution of the
spinodal line in the plane(8, χ), determined numerically for different aggregation energies
ε̃int and h = 1. When the energy of aggregation increases, the spinodal line becomes
more asymmetrical and the critical point shifts towards the low concentrations. The critical
concentration8c varies as a function ofN(8c), the average chain length at the critical
monomer concentration8c, in agreement with the well known results predicted from the
Flory–Huggins theory for polymer solutions (figure 4(a)) [25]:

8c = 1

1+√N(8c)
. (16)

The critical attractive energyχc decreases when the average aggregation number increases
(figure 4(b)). WhenN(8c) becomes infinite, the critical energy of interactionχc tends to a
finite value which is one-quarter of the critical energy of a binary mixture characterized by
spherical micelles (i.e.,N = 1):

χc(N) = χc(1)

4
asN →+∞ (17)

whereχc(1) is the value ofχc(N) with N = 1. This result is in agreement with the relation
predicted from polymer theory [27]:

qβχc = (1+√N(8c))
2

2N(8c)
. (18)

However, for intermediate values ofN , there exists a discrepancy betweenχc derived
from equation (18) and the corresponding value given by the mean-field theory of Flory
and Huggins. Once again this is due to the fact that, in that case, attractive interactions
renormalize the aggregation numberK and subsequentlyN , the average size number. In
the infinite-N limit, this discrepancy vanishes because, in this limit, the chain entropic
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(a)

(b)

Figure 4. (a) Critical monomer concentration8c versus the average number of
aggregationN(8c) at 8c; 8c varies as 1/(1+ √N(8c)). (b) Critical energy of interaction
χc in kBT , as a function of the average number of aggregationN taken at8c. The
continuous line gives the evolution ofχc versusN(8c) predicted from polymer theory:
(q/2)βχc = (1+

√
N(8c))

2/2N(8c).

contributions become negligible with respect to the others (solvent entropy and attractive
interaction energy), near the critical point, as for polymers in solution. Using equations (16)
and (14) it is possible to determine the aggregation constantK, from the value of the
critical concentration8c. However, the knowledge of̃εint is not direct and also requires the
experimental determination of the interaction energy at the critical point (cf equation (13)):
χc. When the elongation process is important(ε̃int = 10–20 kBT ), this correction is
negligible sinceχc � ε̃int . However it may become important for smaller values ofεint
(typically for a fewkBT ) i.e., when the elongation process is not too important. In that case
an evaluation ofχc is easily obtained from the value ofN(8c) and from figure 4(b). The
dilute/semi-dilute threshold surfactant concentration8∗∗(χ) can be evaluated numerically
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Figure 5. Phase diagram for an energy of aggregation ofεint = −8 kBT . Black and white
circles correspond to the spinodal and binodal curves, respectively; black and white lozenges
correspond to the sphere/rod and dilute/semi-dilute transitions, respectively.

from the crossover of the osmotic regime versus monomer concentration between regimes
k = 1/2 andk = 2 (figure 2(a)), and for different values ofχ . This transition line meets
the binodal line close to the critical point (figure 5). At this step note that the binodal
line has been derived from numerical calculations. Indeed it is qualitatively well known
that the critical concentration characterizing a dispersion of random coils corresponds to the
situation where the coils just come into close contact [29]. Because of the renormalization
of K, the general aspects of the phase diagram in the plane(8, χ) (i.e. for ε̃int and ε̃cap
fixed) are very different from the corresponding ones obtained with the classical mean-field
Flory–Huggins theory. The aspect of the spinodal line is altered and presents a re-entrant
character (see figure 5) when theχ values increase. This re-entrant behaviour occurs always
in the dilute regime and results directly from the renormalization ofK due to attractive
interactions. A qualitative insight of this behaviour can be drawn in the following way:
Let us neglect the polydispersity of the micelle solution and assume that it only consists of
chains of lengthN given by equation (12). WhenN is fixed (i.e.,N does not depend on
monomer concentration and attractive interactions), as it is for polymer solutions, the lower
concentration of the spinodal line for a fixed value ofχ increases with decreasing values
of N [5]. In our simplified picture of micellar solutions, the value ofN decreases whenχ
increases, and therefore leads to higher values for the lower concentration of the spinodal
line and eventually to a re-entrant behaviour. Of course, a more correct picture requires us
to take also into account the concentration dependence ofN as well as the polydispersity
of the size distribution. Indeed, a closer look at our model, solved within the mean-field
approximation, allows one to give an analytical expression of the spinodal equation in the
dilute regime (see equation (B11)):

∂2(βF/M)

∂82
= 0≈ h

2
√

2qK

1

8
3/2
spino

+ (1− qβχspino). (19)

This expression, which is identical to that derived by Cates and Candau [14], leads to a
re-entrant behaviour, when the renormalization ofK is taken into account (cf equation (13)).
At this step it is worth mentioning that, in contrast to the spinodal line, the binodal line
does not show a similar re-entrant character (see figure 5). Thus it is difficult to give strong
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physical arguments for justifying such a kind of behaviour; in addition a mathematical
derivation would imply heavy calculations which do not carry further information with
respect to numerical ones. At low surfactant concentration, the sphere to rod transition
line given by equation (15) crosses the spinodal line (equation (19)) and therefore the
binodal too. As a consequence, in this low concentration range, one may expect specific
nucleation phenomena related to the existence of the sphere to rod transition line in the
two phase region. To our knowledge, there do not yet exist any systematic experimental
studies on the dynamics of phase separation in micellar systems where a unidimensional
aggregation process takes place. We hope that this work will motivate such experimental
studies. In the model described here, we have not taken into account the existence of
isolated surfactant molecules in solution. Including an isolated surfactant molecule into an
aggregate involves a free energy costD of order 10–25kBT which fixes the value of the
critical monomer concentration (cmc) according to ln(cmc) ≈ −D. Above the cmc, most
of the molecules are included into aggregates and the size distribution is only determined
by the end energyδ (i.e., the free energy cost for transferring a surfactant molecule from
the cylindrical body of the aggregate to its end cap). Our approach is then valid only
for concentration higher than the cmc. Note that in a similar way, Wheeler and Pfeuty
have not included the existence of the inactive S8 monomers in their treatment of liquid
sulphur solutions. It is worth mentioning again that we have not accounted in this model
for the possible formation of rings. We have mentioned in the introduction section that
two mechanisms are referred to in the literature to explain the observed phase separations
in solution of worm-like micelles: Van der Waals interaction between monomers and the
formation of a connected micellar network. It is important to note that while the first
possibility is well treated here, the topological mechanism (i.e., formation of crosslinks) is
beyond the scope of the current spin formalism. Experimentally it is difficult to conclude
between the two mechanisms. Scattering techniques involving neutron or light cannot
differentiate a network consisting of crosslinked cylindrical micelles that are multiconnected
(topological mechanism) from an entangled network with no crosslinks. However, the
dynamical properties such as rheological ones are expected to differ quite considerably.
Many experimental observations on worm-like micelles are in agreement with a model
developed by Cates [14, 33] which describes the dynamic behaviour of entangled linear
micelles (i.e. with no crosslinks) that can break and recombine. In particular, huge increases
in the zero shear viscosity and elastic modulus with micellar length have been clearly
observed in systems such as CTAB/KBr and are in good agreement with the scaling
predictions of this model. However, there exist many discrepancies with this model as
well, in other systems. In several systems such as lecithin/trace water/isooctane [34] and
CPyClO3/NaClO3/water [35] a huge increase in micellar length is observed under small
variations of a suitable control parameter (water content or ionic strength). This increase
is followed by an enormous enhancement of the zero shear viscosity. However as the
control parameter is moved further in the same direction, the viscosity falls dramatically
again. An explanation of this decrease of viscosity is that the micelles are fusing to form
a connected network. This would reduce the viscosity because the branch points are not
chemical connections and can slide along the branches or act as a release of entanglements
via the existence of branch points. Note that a similar behaviour arises in the case of the
sponge phase and bicontinuous microemulsions despite the presence of a continuous two-
dimensional sheet [36, 37]. Another possibility is that the micelles are becoming shorter
and/or that the kinetic rate for micellar scission increases as the control parameter is moved
further. This scenario which is consistent with the increasingly exponential relaxation
behaviour that has been reported on one side of the viscosity peak [14, 35] cannot be
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ruled out. Indeed, recent cryotransmission electron microscopy experiments seem rather to
confirm the existence of branched micelles in aqueous systems [38, 39]. Our model predicts
that attractive interactions oppose the elongation process. Many experimental data show
that the micellar length (i.e.,K) decreases upon raising the temperature [14]. However,
it is hard to conclude that this effect is only due to attraction energy between beads since
another energy,εcyl , is also involved in the elongating process. An interesting system
where our prediction may apply is C16E6 in 0.5 M NaSCN solutions [40, 41]. Cummins
et al has studied in this system, which forms long micelles and phase separates as the
temperature is raised, the micellar length as a function of the reduced temperature(T − Tc)
where Tc is the critical temperature and has shown that this effective length presents a
maximum as a function of this parameter and decreases on approaching the critical point
[42]. This decrease of micellar length on approaching the cloud point is in agreement
with the prediction derived from our model. However, it can be also interpreted as the
existence of ruler micelles near the cloud point, resulting from a two dimensional growth
[43, 44]. Finally, the possibility of specific nucleation phenomena in micellar systems may
also exist in solutions where the micelles are branching (provided that the sphere to rod
transition line extends to the two phase regions of the phase diagram). We hope that this
will motivate experimental studies on the dynamics of phase separation in such systems in
a near future.

4. Conclusion

In this article, we have shown that the employed Hamiltonian offers a unified theoretical
approach capable of treating phase separation in worm-like micellar solutions at any
concentration. In contrast to previous treatments [1–9, 16, 17], it avoids the use of separate
models for different concentration ranges and may benefit from general methods used in
theories of magnetism (such as renormalization calculations). Solved within the mean-field
approximation, this model allows one to retrieve well known results of polymer solutions.
Nevertheless, we recall that, in contrast to polymers, the average micelle length is not fixed
but does increase as the square root of the concentration and depends on the interaction
energy between monomers (cf equations (28), (29)). The presence of attractive interactions
between monomer renormalizes the aggregation constantK and subsequently the average
micelle sizeN which may alter the critical behaviour of dynamic properties such as viscosity.
In a mean-field approximation, the renormalization of the aggregation constant also leads to
a different aspect of the phase diagram in the plane(8, χ) with respect to the corresponding
one given by Flory and Huggins. The spinodal line shows a re-entrant behaviour and, at
low concentration, one may expect specific nucleation phenomena related to the existence of
the topological (sphere to rod) transition line in the metastable region of the phase diagram.
We hope that this will motivate experimental studies on the dynamics of phase separation
in systems where a unidimensional aggregation process takes place.
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Appendix A

Let us consider a lattice composed ofM sites. With each sitek is associated ann → 0
spin-vectorSk and an occupation numberσk characterized by the possible values+1 or 0
(σk tell us whether or not the site is occupied by a monomer unit). Under these conditions
one may write the basic HamiltonianH :

−βH = K
∑
〈i,j〉

Si · Sj σiσj + h
M∑
i=1

Si,1σi + µ̃β
M∑
i=1

σi + χβ
∑
〈i,j〉

σiσj

+
(
Q− h

2

2

) M∑
i=1

S2
i,1σ

2
i . (A1)

When n tends to zero (which must be only considered as a mathematical trick), the
partition functionZ can be related to the problem of polydispersed and mutually and self-
avoiding chains on a Flory–Huggins lattice. This surprising analogy between magnetism
and polymers was first derived by de Gennes [5, 30] and des Cloizeaux [31] and has been
correlatively applied in a large variety of problems including polymerization in liquid
sulphur, liquid sulphur solutions, living polymers and solutions of flexible micelles with
no phase separation [20–23, 27, 28]. Using a 2n-component model (withn → 0), Freed
[32] has managed to remove the polydispersity inherent to the structure of the original
spin-vector model. Let〈F 〉0 be the average of a variableF over all the equally weighted
orientations of each spin. In contrast, the thermal average of the same variableF (where
the states are weighted by the factor exp(−βH)) is written as〈F 〉. The relation between
the two types of average for any functionF(S1,S2, . . . ,SM) is:

〈F 〉 = 〈F exp(−βH)〉0
〈exp(−βH)〉0 . (A2)

The partition functionZ is then given by〈exp(−βH)〉0. Another possible expression ofZ
is given by expanding exp(−βH) in terms of powers ofH :

Z

M
= 〈1〉0− β〈H 〉0+ β

2

2
〈H 2〉0+ · · · + (−β)

n

n!
〈Hn〉0+ · · · (A3)

whereM is the total number of lattice sites. This expression cannot be computed because
of its very complicated structure. However, in the particular casen = 0, it turns out that it
becomes plainly simpler because of the moment theorem which states:

〈Si,αSj,β〉0 = δα,βδi,j (A4)

and

〈Smi,α〉0 = δ2,m + δ0,m. (A5)

Using an expansion similar to that one previously described, the partition functionZ can
be expressed as:

Z(h,K, µ̃, χ,M) =
〈∑
{σi }

∏
〈i,j〉

[
1+KSi · Sj σiσj + K

2

2
(Si · Sj σiσj )2

]

×
M∏
i=1

(
1+ hSi,1σi + h

2

2
(Si,1σi)

2

) M∏
i=1

(
1+

(
Q− h

2

2

)
S2
i,1σ

2
i

)

× exp

(
−βµ̃

M∑
i=1

σi

)
exp

(
−βχ

∑
i,j

σiσj

)〉
0

(A6)
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(a)

(b)

Figure A1. Schematic representation of a link between two nearest neighbour sites. Such a link
is related to a prefactor termKSk,αSj,α in the polynomial expansion of the partition functionZ.
In the case of the loop involving four sites, the corresponding contribution is(KS2,αS3,α)

(KS3,αS7,α) (KS7,αS6,α) (KS6,αS2,α). In the limit n → 0, the summation overα leads to a
vanishing contribution. (b) Lattice representation of a configuration consisting of one isolated
monomer (site 9), a two-monomer chain (sites 15 and 16) and a five-monomer chain (sites 1,
2, 3, 7 and 11). The corresponding configuration has a prefactorK5h4 and its total energy is
χ + η + 4εend + 3εint .

where{σi} represents the total number of configurations over the variableσi for the whole
lattice. Then, expandingZ as power series ofS leads to a sum of polynomial expressions
containing a factorSm(k)k,l for each sitek. Because of then → 0 limit (cf equations (A4)
and (A5)), the non-vanishing contributions to the grand-partition function only correspond
to polynomials for whichm(k) = 0 or 2. As de Gennes first noticed [5, 30], in that case,
all successive terms ofZ may be represented as a graph on a lattice. To each nearest
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neighbour linkKSi · Sj one associates a continuous line (see figure A1(a)). The graphs
can never intersect themselves because otherwise the existence of an intersecting site would
imply the presence of a term〈Smi,α〉0 with m > 2 or a term〈Spi,αSqi,β〉0 with α 6= β (p and
q being larger than or equal to 2) in the sum given by equation (A6). Consequently, the
only allowed graphs are those corresponding to linear, mutually and self-avoiding open
chains. Remember that configurations containing rings correspond to a vanishing term in
the expansion ofZ(h,K) (figure A1(a)). In the expression of the partition functionZ,
each non-vanishing loop shows a single value of the component indexα for the whole sites
involved in this loop. Therefore, for each closed loop characterized byp bonds, when the
summation over the component indexα is achieved, one gets the contribution(βK)p in the
expansion ofZ. But, sincen = 0, the contribution of closed loops vanish. Linear open
chains are characterized by two endshSi,αKSi,αSj,α with α = 1. Chains visiting a site for
which σk = 0 do not contribute to the grand-partition function and are therefore not allowed
by the model. At this step one must remember that linear open chains only arise from
products such ashSi,1σi or KSi,1σiSj,1σj . Therefore, if one sitek of a chain is occupied by
solvent, (σk = 0), the corresponding factor cancels so that the correlative contribution drops
out in the partition function. Situations for whichm(k) = 0 correspond to configurations
where the sitek is occupied either by an isolated monomer(σk = +1) or solvent molecules
(σk = 0). In addition situations for whichm(k) = 2 correspond to configurations where
the sitek is occupied by a monomer(σk = +1) belonging to a graph consisting of two
monomers or more. Note that the particular choiceQ = 0 ensures that the presence of
an isolated monomer on sitek does not correspond to a situation wherem(k) = 2. In the
polynomial expansion of exp(−βH), m(k) = 2 requires the presence of a term(h2/2)S2

k,1.
Such a term may arise either from the expansion of exp(hSk,1σk) up to the second order
or from the first order of exp[(Q − h2/2)S2

k,1σk]. When Q = 0, the sum of these two
contributions vanishes. Consequently, provided thatQ = 0, the number of configurations
for which an isolated monomer lies on a site(k), i.e. σk = 1, is not counted twice, since
such configurations only correspond to situation wherem(k) = 0. Thus configurations with
p linear open chains andl bonds lead to polynomials characterized by the prefactorh2pKl

(figure A1(b)). The total number of monomers (isolated or incorporated into linear chains)
in the configuration is given by the sum overk (with k varying from unity toM), the current
term of which isσk. It follows that the partition functionZ may be written as:

Z =
∑
{σi }

∑
l

∑
p

∑
m

0(m, l, p, {σi},M)h2pKl exp(βχN+1,+1) exp[βµ̃(m+ l + p)] (A7)

where0(m, l, p, {σi},M) represents the total number of ways of depositing(m + p + l)
monomers on the lattice by imposing the presence ofm isolated monomers,p linear open
chains and(l + p) monomers incorporated into linear mutually and self-avoiding chains;
N+1,+1 is the number of nearest neighbour sites〈i, j〉 such thatσi = +1 andσj = +1.

Appendix B

Let us denote byf (S, σ ) the mean-field probability function describing the distribution of
a single-site occupation numberσ and spin componentS. In the mean-field approximation,
the Helmholtz free energy per siteF/M of the Hamiltonian can be written as follows:

βF

M
= β〈H 〉

M
+

1∑
σ=0

∫
f (S, σ ) ln f (S, σ )dS. (B1)
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From now the brackets refer to a mean-field average. The energy per site becomes:

β〈H 〉
M
= −

[
h〈Sσ 〉 + Kq

2
〈Sσ 〉2+ µ̃β〈σ 〉 + qχβ

2
〈σ 〉2− h

2

2
〈(Sσ)2〉

]
(B2)

whereq is the coordination number of any site. Furthermore, the probability functionf

must satisfy the normalization condition:
1∑

σ=0

∫
f (S, σ )dS = +1. (B3)

Owing to equations (B2) and (B3) one can minimize equation (B1) with respect tof and
it leads to the following expression:

f (S, σ ) = 1

C
exp

[
qK〈Sσ 〉Sσ + hSσ + βµ̃σ + βqχ〈σ 〉σ − h

2

2
S2σ 2

]
(B4)

with

C = 1+
(

1+ qhK〈Sσ 〉 + (qK)
2

2
〈Sσ 〉2

)
exp[β(µ̃+ qχ〈σ 〉)]. (B5)

Then, using the moment theorem associated with the special statistics in the vanishing
n limit (cf equation (A5) in appendix A), it follows:

〈Sσ 〉 =
+1∑
σ=0

∫
Sσf (S, σ )dS = 1

C
exp[β(µ̃+ qχ〈σ 〉)](h+ qK〈Sσ 〉) (B6)

and

〈σ 〉 =
+1∑
σ=0

∫
σf (S, σ )dS = (C − 1)

C
. (B7)

The definition of the occupation number implies that〈σ 〉 = 8 where8 is the total monomer
concentration. It results from equations (B5)–(B7) that:

〈Sσ 〉 = 8(h+ qK〈Sσ 〉)(
1+ qKh〈Sσ 〉 + ((qK)2/2)〈Sσ 〉2) . (B8)

Using the previous equalities, the free energy per site (i.e., the osmotic pressure of the
solutionπ ) is:

−βπv0 = − lnZ(h,K,µ, χ)

M
= ln(1−8)+ qK

2
〈Sσ 〉2+ qβχ

2
82 (B9)

wherev0 is the elementary volume of a cell. Consequently, the free energy per site of the
micelle solution,βF/M, is given by:

βF
M
= βµ8− βπv0 = 8 ln

[ 〈Sσ 〉
(1−8)(h+ qK〈Sσ 〉)

]
+ βη8+ ln(1−8)− qβχ

2
82

+qK
2
〈Sσ 〉2. (B10)

From the expression of free energy, it is possible to evaluate several properties of the
solution such as phase separation and average aggregation number.

For the phase separation, one must take into account the definition of the spinodal
line i.e.: (

∂2F
∂82

)
= 0. (B11)
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At this step, one must recall that critical points which lie on the spinodal line verify:(
∂3F
∂83

)
= 0. (B12)

The average aggregation numberN is given by the ratio of the total number of monomers
in solution (i.e.,M8 where8 is the monomer concentration) over the total number of
chains (single sites and others)〈p+m〉. From the expression of the osmotic pressureπ , it
is possible to estimate〈p〉:

〈p〉 = h

2

∂

∂h
lnZ = −βhM

2

∂π

∂h
. (B13)

In addition one has:

〈l〉 = −βKM ∂π

∂K
〈m〉 = M8− 〈p〉 − 〈l〉. (B14)

Note that, in the grand-canonical ensembleZ(h,K,µ, χ, η), 8 the total monomer
concentration is not constant and then must be derived with respect toh andK in the
previous expressions. This is the reason for which, for evaluating the average aggregation
number, it is more convenient to use the canonical ensemble9(h,K,8, χ, η). The free
energy of the solution of micelles can be then expressed as a function of9(h,K,8, χ, η):

βF = − ln9(h,K,8, χ, η) (B15)

i.e.:

βF
M
= βµ8− βπv0 = 8 ln

[ 〈Sσ 〉
(1−8)(h+ qK〈Sσ 〉)

]
+ βηφ + ln(1−8)− qβχ

2
82

+qK
2
〈Sσ 〉2 (B16)

where〈Sσ 〉 is the solution of equation (B8). In the canonical ensemble, the average number
of open chains〈p〉 and intermolecular links〈l〉 are respectively given by:

〈p〉 = h

2

∂ ln9(h,K,8, χ, η)

∂h
= −βh

2

∂F
∂h

(B17)

and

〈l〉 = K ∂ ln9(h,K,8, χ, η)

∂K
= −K ∂F

∂K
(B18)

〈m〉, the average number of isolated monomers, is simply derived from the conservation of
the number of surfactant molecules in solution:

〈m〉 =
∑
i

σi − 〈p〉 − 〈l〉 = M8− 〈p〉 − 〈l〉. (B19)

Appendix C

In the mean-field approximation, the evolution with surfactant concentration of the
thermodynamic properties of a worm-like micelle solution requires us to determineX(8) =
〈Sσ 〉(8) which is the solution of the following equation (cf appendix B):

X = 8(h+ λX)
(1+ hλX + (λ2/2)X2)

(C1)

whereλ = qK.
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Indeed, by thoroughly examining this equation, one can distinguish, depending on the
surfactant concentration, two regimes whereX(8) can be easily estimated. These two
concentration regimes correspond respectively to8 � 8∗ and8 � 8∗ (where8∗ is the
surfactant concentration corresponding to the sphere to rod transition).

Let us consider first the case where8 � 8∗. This case corresponds to the following
mathematical assumption in equation (C1):λX � h and λ � h � 1 (i.e., strong
aggregation). Within this assumption, the dominant terms in the denominator and numerator
of the right term of equation (C1) are respectively 1 and8h and therefore an estimate for
X in this regime is given by:

X ≈ 8h. (C2)

Reporting this expression in equations (B9), (B10) and (B17) leads to:

βπv0 ≈ 8 (C3)

βF

M
≈ 8 ln(8)+ (1−8) ln(1−8)+ βη8−82

[
qβχ

2
+ qK

(
1− h

2

2

)]
(C4)

and

N ≈ 1+ qKh
2

2
8 ≈ 1; (C5)

this region corresponds to surfactant concentrations well below the sphere to rod transition
concentration.

Let us now consider the other extreme case corresponding to8 � 8∗. This case
corresponds to the mathematical assumptionλX � h > 1. Within this assumption, the
dominant terms in the denominator and numerator of the right term of equation (C1) are
respectively8λX and (λX)2/2. Therefore a first order estimate ofX(8) in this regime is
given by:

X ≈
√

28

λ
. (C6)

In order to push further the estimate ofX(8), which is necessary to find forπ a 81/2

dependence, we take:

X = X0(1+ u) =
√

28

λ
(1+ u) (C7)

whereu is the solution of the following equation:

(28h+X0)+ uX0(1+ 2λX0)+ u2X0(
3
2λ

2X2
0 + hλX0)+ λ

2

2
X3

0u
3 = 0. (C8)

Comparing the magnitude of the different terms (remember thatλX0� h) in this equation
leads to the following rough estimates ofu and therefore ofX:

u ≈ − h

2λX0
(C9)

X ≈
√

28

λ
− h

2λ
. (C10)

Replacing this expression in equations (B9)–(B16) and performing an expansion inu, gives
the following estimates for the osmotic pressure and free energy per site:

−βπv0 ≈ − ln(1−8)+8+ qβχ
2
82− h

√
8

2qK
(C11)
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βF
M
≈ (1−8) ln(1−8)+8(1− ln(qK))− qβχ

2
82− h

√
8

2qK
. (C12)

When the elongation process is important, the dilute regime occurs at low surfactant
concentration and the osmotic pressure is roughly given by:

βπv0 ≈ h
√

8

2qK
. (C13)
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